A class of liquid anode for rechargeable batteries with ultralong cycle life

نویسندگان

  • Juezhi Yu
  • Yong-Sheng Hu
  • Feng Pan
  • Zhizhen Zhang
  • Qing Wang
  • Hong Li
  • Xuejie Huang
  • Liquan Chen
چکیده

Low cost, highly efficient and safe devices for energy storage have long been desired in our society. Among these devices, electrochemical batteries with alkali metal anodes have attracted worldwide attention. However, the practical application of such systems is limited by dendrite formation and low cycling efficiency of alkali metals. Here we report a class of liquid anodes fabricated by dissolving sodium metal into a mixed solution of biphenyl and ethers. Such liquid anodes are highly safe and have a low redox potential of 0.09 V versus sodium, exhibiting a high conductivity of 1.2 × 10-2 S cm-1. When coupled with polysulfides dissolved in dimethyl sulfoxide as the cathode, a battery is demonstrated to sustain over 3,500 cycles without measureable capacity loss at room temperature. This work provides a base for exploring a family of liquid anodes for rechargeable batteries that potentially meet the requirements for grid-scale electrical energy storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfurized Carbon: A Class of Cathode Materials for High Performance Lithium/Sulfur Batteries

*Correspondence: Sheng S. Zhang, Electrochemistry Branch, RDRL-SED-C, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, USA e-mail: [email protected]; [email protected] Liquid electrolyte lithium/sulfur (Li/S) batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and...

متن کامل

Reality and Future of Rechargeable Lithium Batteries

Compared to other types of rechargeable batteries, the rechargeable lithium battery has many advantages, such as: higher energy density, lower self-discharge rate, higher voltages and longer cycle life. This article provides an overview of the cathode, anode, electrolyte and separator materials used in rechargeable lithium batteries. The advantages and challenges of various materials used in re...

متن کامل

Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode

The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...

متن کامل

The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries.

The disodium salt of 2,5-dihydroxy-1,4-benzoquinone has been prepared and proposed as anode material for rechargeable sodium ion batteries for the first time, showing an average operation voltage of ∼1.2 V, a reversible capacity of ∼265 mA h g(-1), a long cycle life (300 cycles), and high rate capability.

متن کامل

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017